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Abstract 

Background:  Cutaneous Melanoma (CM) is a malignant disease with increasing incidence and high mortality. Fer-
roptosis is a new kind of cell death and related to tumor blood and lymphatic metastasis. This study aims at using 
bioinformatics technology to construct a prognostic signature and identify ferroptosis-related biomarkers to improve 
the prognosis and treatment of cutaneous melanoma.

Methods:  We used bioinformatics tools to analyze RNA sequencing expression data with clinical information from 
multiple databases, utilized varieties of statistical methods to construct a ferroptosis-related prognostic signature of 
cutaneous melanoma and screened out specific genes with independent prognostic ability.

Results:  We obtained 22 ferroptosis-related (P < 0.05) prognostic DEGs in the uniCox regression analysis, among 
which 10 high-expressed genes (ATG5, CHAC1, FANCD2, FBXL5, HMOX2, HSPB1, NQO1, PEBP1, PRNP, SLC3A2) were 
screened out by LASSO regression analysis to establish a predictive model. Meanwhile, the ferroptosis-related sig-
nature and the nomogram we drew performed an excellent performance based on Kaplan–Meier (K–M), Receiver 
operating characteristic (ROC) and calibration curves. Univariate and multivariable cox analyses displayed that our 
model was greater than other prognostic features. GO and KEGG analyses revealed that 10-biomarker signature was 
mainly related to epidermis differentiation and immunity. ssGSEA analysis indicated that the immune status between 
the two risk groups was highly different. Besides, we found that two genes (CP, ZEB1) had independent prognostic 
ability and can be applied for drug research. Both genes were highly related to immunity. GSEA illustrated that ZEB1 
may be involved in cellular functions such as proliferation, apoptosis, and migration, while CP was closely connected 
to immune cell related functions.

Conclusion:  The present study suggested a 10-biomarker signature can be clinically used to predict the prognosis of 
cutaneous melanoma, which was better than conventional factors. CP and ZEB1 were independent prognostic genes 
and can be applied to guide treatment. In addition, ZEB1 mutation was highly related to overall survival in cutaneous 
melanoma, while CP may be associated with tumor progression. Our study comprehensively analyzed the relation-
ship between iron metabolism, ferroptosis-related genes, and the prognosis of cutaneous melanoma, provided new 
insight for molecular mechanisms and treatment of ferroptosis and cutaneous melanoma.
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Background
Cutaneous Melanoma (CM) is one of the most metastatic 
tumors caused by cells that produce pigments in the epi-
dermis [1]. In 2020, Approximately 100,350 cases (5.6%) 
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of newly diagnosed primary malignant tumors (excluding 
non-melanoma skin cancer) are skin melanoma and the 
incidence is still rising [2, 3]. Although melanoma only 
accounts for about 5% of skin cancers, it results in more 
than 75% of deaths [4]. Among the malignant tumors in 
the US in 2020, melanoma of the skin ranks 4th among 
men and 5th among women [2]. Current treatments for 
melanoma include surgery, targeted drugs and immu-
notherapy [5]. In addition, the five-year survival rate for 
melanoma with lymph node metastasis is 13–90%, and 
the prognosis is not greatly improved [6]. Therefore, 
there is an urgent need for a model to predict the prog-
nosis of melanoma.

Ferroptosis was firstly proposed by Dixon in 2012 as 
a new type of programmed cell death [7]. Unlike tradi-
tional apoptosis, ferroptosis is iron-dependent and reac-
tive oxygen-dependent. The main cytological change of 
ferroptosis is the decrease and disappearance of mito-
chondria instead of the characteristics, like cell swelling, 
in other cell deaths. The accumulation of intracellular 
iron makes cells sensitive to oxidative damage, and iron-
dependent reactive oxygen species (ROS) will cause 
mitochondrial lipid peroxidation. Cells may die with the 
destruction of mitochondria [8–12]. Other research has 
shown that iron death plays an important role in liver 
cancer [13], lung cancer [14], colorectal cancer [15] and 
many other tumors by regulating a variety of tumor sup-
pressor factors (including p53, BAP1) [16, 17]. It provides 
a good prospect for monitoring, diagnosing, predicting 
the prognosis of the disease. Meanwhile, a recent study 
showed that ferroptosis can inhibit blood and lymphatic 
metastasis of the tumor [18]. Therefore, analyzing the 
correlation between iron death-related genes and the 
prognosis of tumor patients is reasonable and important.

At present, there are studies exploring prognostic gene 
models related to ferroptosis in tumors. Liu et al. demon-
strated that a ferroptosis-related prognostic model can be 
used to predict the survival rate of patients with glioma 
[19]. Liang et  al. [20] constructed a prognostic genetic 
model of hepatocellular carcinoma related to ferroptosis. 
Luo et al. found that iron death-related genes can be used 
to predict the prognosis of uveal melanoma [21]. In order 
to explore the relationship between ferroptosis and mela-
noma patients survival status and increase the choices in 
the diagnosis and treatment of melanoma and the prog-
nostic judgment, we used data from databases includ-
ing TCGA, GTEx, GEO and previous studies to analyze 
iron death-related genes in melanoma and construct a 
ferroptosis-related gene model that can be employed for 
prognosis prediction. Ferroptosis-related genes in prog-
nostic model will promote new ideas for the exploration 
of tumor pathogenesis and further treatment.

Methods
Data collection
In the current study, a total of 1284 RNA sequencing 
(RNA-seq) data and clinical materials about cutaneous 
melanoma (CM) were included in the training group. 
Among them, 472 samples were downloaded from the 
TCGA database,1 including 1 normal and 471 tumor 
samples. To increase the normal sample size, we col-
lected the expression profiles of 812 normal skin samples 
in the GTEx data downloaded through UCSC Xena2 [20, 
22]. Subsequently, an expression matrix file (GSE65904) 
from the GEO Database3 was used as external verifica-
tion. All data are publicly available. Therefore, this study 
was exempt from the permission of the local ethics 
committee.

Acquisition of genes related to ferroptosis and iron 
metabolism
Genes related to ferroptosis were obtained in the iron 
death pathway (map04216) in the KEGG Database4 
[23]. Genes related to iron metabolism and cellular iron 
ion homeostasis were derived from the iron uptake and 
transport pathways (R-HSA-917937) in the Reactome 
Pathway Database5 and the AmiGo2 Database,6 respec-
tively [24]. We eliminated the duplicate ones after adding 
ferroptosis genes reported recently [20] and thus a total 
of 173 iron death-related genes were used in this study. 
The whole genes list was displayed in Additional file  2: 
Table S1.

Data processing in training and validation cohorts
In the TCGA and GTEx cohorts, genes expression lev-
els were reannotated by the "rtracklayer" R package and 
batch effects were eliminated by "sav" R package. We 
applied "affy" R package to use the Robust Multi-Array 
Average (RMA) method to normalize data. DEGs were 
distinguished by using the "limma" R software package 
with a false discovery rate (FDR) < 0.01. Then, univari-
ate Cox regression analysis of overall survival (OS) was 
conducted to identify iron death-related genes with prog-
nostic value. We took the intersection of DEGs and the 
ferroptosis-related prognostic genes. Heatmap and box-
line map were drawn by the "pheatmap" and "ggpubr" 
R software packages, which could visually display the 
expression of genes in two groups. Prognostic-related 

1  https://​portal.​gdc.​cancer.​gov/​proje​cts.
2  https://​xenab​rowser.​net/​datap​ages/
3  http://​www.​ncbi.​nlm.​nih.​gov/​geo/.
4  https://​www.​genome.​jp/​kegg/​pathw​ay.​html.
5  https://​react​ome.​org/
6  http://​amigo.​geneo​ntolo​gy.​org/​amigo.
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DEGs interaction network analysis was generated in the 
STRING Database7and GeneMANIA databases8 [25]. 
Then we performed enrichment analysis in the Metas-
cape database.9 To make these genes have the same 
prognostic prediction orientation, we divided them 
into two groups: high-and low-expressed groups in 
tumors. We used the "glmnet" R software package to 
carry out LASSO-penalized Cox regression analysis on 
high-expressed genes to avoid over-fitting of the model 
[20, 26]. The regressed genes were used to construct a 
risk scoring model. The risk score of each melanoma 
patient was calculated through a scoring formula (Risk 
score = 

∑
n

i
Expi ∗ βi ; n, Expi , and βi represent the num-

ber of genes, gene expression level, and regression coeffi-
cient value, respectively). melanoma patients were parted 
into high- and low-risk groups according to the median 
risk score. Meanwhile, we divided the patients into low-
stage group (Stage I/II) and high-stage group (Stage III/
IV) according to AJCC. Next, we used the "survminer" 
and "survivalROC" R software package to draw Kaplan–
Meier (KM) survival curves for the two groups. Receiver 
operating characteristic curves (ROC) were applied to 
predict the sensitivity and specificity of the prognostic 
model. In addition, the "stats" R package was used for 
principal component analysis (PCA) to explore the dis-
tribution of different groups based on the survival status. 
Then, we used GEO data to test and verify these results. 
Univariate Cox analysis and multivariate Cox analyses 
were used to judge whether the risk scoring model and 
other parameters can be regarded as independent prog-
nostic factors. To increase the predictability of the risk 
score model, we integrated other features of melanoma 
patients and a nomogram was drawn by the "rms" R 
package to predict OS in melanoma patients. Calibration 
curves at 3-, 5- and 10-year were drawn to evaluate the 
difference between the observed results and the nomo-
gram-predicted results.

Functional enrichment analysis
All DEGs between high-risk and low-risk groups were 
identified by using the "limma" R software package 
(|log2FC|≥ 1, FDR < 0.05). Next, we used "Cluster Pro-
filer" R software package to carry out Kyoto Encyclope-
dia of Genes and Genomes (KEGG) and Gene Ontology 
(GO) analyses on DEGs (P < 0.05) [27, 28]. The single 
gene enrichment analysis (ssGSEA) was conducted by 
"gsva" R software package to calculate the activity of 13 

immune-related pathways and the infiltration score of 16 
immune cells (Additional file 3: Table S2).

Independent prognostic analysis of ferroptosis‑related 
genes
We performed univariate Cox analysis and multivariate 
Cox analysis to clarify the independent prognostic abil-
ity of the genes in the high- and low- expression group, 
respectively. Then we screened out the genes that had 
independent prognostic ability in both univariate and 
multivariate Cox analyses. These genes will be used in the 
next part.

GEPIA and PrognoScan
Based on the independent prognostic genes, we com-
pared the mRNA expression of these genes in 461mela-
noma tissues and 558 adjacent tissues (log2FC |≥ 1, 
P < 0.05) and drew the survival curves of genes with over-
all survival time and disease-free survival (DFS) time in 
Gene Expression Profiling Interactive Analysis (GEPIA) 
databases,10 which is an online tool. Then we again veri-
fied them in the PrognoScan database,11 which is a tool 
for assessing the biological relationship between gene 
expression and prognosis by employing the minimum 
P-value approach for grouping patients for survival anal-
ysis [29].

cBioPortal
cBioPortal database12 is a resource-rich website, provid-
ing visualization tools for research and analysis of cancer 
genetic data [30]. In order to understand the relationship 
between the genomics alternations of these genes and 
melanoma, we analyzed the alternation manifestation 
and relationship between gene mutation and survival 
time in cBioPortal database and drew K–M curves of 
genes alternation groups and non-mutated groups.

TISIDB and TIMER
TISIDB13 is an online database containing a large amount 
of tumor immunity related data, which can be utilized 
to analyze the relationship between genes and immune, 
clinical information and drugs [31]. We used this data-
base to gain a comprehensive understanding of a gene 
and its association with survival in various tumors, 
including cutaneous melanoma. And we further explored 
the correlation between these genes and the infiltration 
of 6 major immune cells (B cells, CD4+ T cells, CD8+ T 

7  https://​string-​db.​org/, version 11.0.
8  http://​www.​genem​ania.​org.
9  https://​metas​cape.​org/.

10  http://​gepia.​cancer-​pku.​cn/​index.​html.
11  http://​dna00.​bio.​kyute​ch.​ac.​jp/​Progn​oScan/​index.​html.
12  http://​www.​cbiop​ortal.​org.
13  http://​cis.​hku.​hk/​TISIDB/.

https://string-db.org/
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cells, macrophages, dendritic cells and neutrophils) in the 
TIMER14 database.

GSEA
Based on genomics alternations of these genes, we identi-
fied that the signaling pathways are differentially activated 
in these genes. We divided melanoma patients into high-
risk and low-risk groups according to single gene expres-
sion. Then we performed Gene set enrichment analysis 
(GSEA) on each gene. Gene set permutations were per-
formed 1000 times for each analysis. P value < 0.05 and q 
value < 0.25 were considered as significant.

HPA
The HPA database15(Human Protein Atlas) is a website 
about proteomics, transcriptomics and systems biology 
data, which can map tissues, cells, organs, etc.

Statistical analysis
All data were analyzed with R 3.6.3 software. Student’s 
t-test was applied to identify the DEGs between non-
tumor tissues and tumor tissues. The chi-square test was 
applied for the comparison of proportional differences. 
The adjustment of the P value was abided by Benjamini & 
Hochberg (BH) method. Kaplan–Meier analysis and log-
rank test were carried out to compare OS between two 
groups. In addition, univariate and multivariate analyses 
were used to identify independent prognostic factors of 
OS. If not specified above, a P value less than 0.05 was 
considered statistically significant.

Results
There were 471 melanoma patients and 813 normal sam-
ples finally enrolled from the TCGA-SKCM cohort and 
GTEx cohort.

Identification of prognostic ferroptosis‑related DEGs
A total of 76 iron death-related genes (76/173, 43.9%) 
were differentially expressed in non-tumor tissues and 
tumor tissues. 76 iron-death genes were considered 
DEGs and 24 prognostic-related genes were related to 
OS in the uniCox regression analysis (Additional file  4: 
Table S3 and Additional file 5: Table S4). After calculat-
ing the intersection, 22 prognostic ferroptosis-related 
genes were included in the study (Fig.  1A, B). Heatmap 
and boxplot showed that there were 13 highly expressed 
genes in tumor samples (Fig. 1C, D). The related link of 
22 genes in our cohort was shown in Fig.  1E. HMOX2, 
ZEB1, HSPB1, SLC40A1, NFE2L2 and ACSL4 seemed 

to be the hub genes, where HMOX2 and ZEB1 were 
negatively related to many genes. The correlation analy-
sis network diagram in the STRING database illustrated 
that CS, CP, NFE2L2, HMOX2, and HSPB1 were the 
key genes (Fig.  1F), which was similar with the results 
in our cohort. The correlation analysis network diagram 
in GeneMANIA database showed that there was a high 
co-expression rate (42.13%) and physical interaction 
(25.43%) among these genes (Fig. 1G). In the Metascape 
database, GO enrichment analysis results indicated that 
these genes were mainly related to the cellular transition 
metal ions homeostasis and the response to oxidative 
stress (Fig.  1H). We also found that some genes can be 
divided into two groups, high expression genes (ABCC1, 
ACSL4, ATG5, CHAC1, FANCD2, FBXL5, HMOX2, 
HSPB1, NQO1, PEBP1, PRNP, SLC3A2, SLC40A1, 
SQLE) and low expression genes(ACACA, ATP5MC3, 
CP, CS, EMC2, NFE2L2, NFS1, SQLE, ZEB1). When 
these low-expressed genes were used to calculate risk 
score with high-expressed genes, the weighted total score 
may be affected [20]. Consequently, we chose the high-
expressed genes and performed LASSO regression analy-
sis. When λ value was optimal, 10 genes (ATG5, CHAC1, 
FANCD2, FBXL5, HMOX2, HSPB1, NQO1, PEBP1, 
PRNP, SLC3A2) were identified to be utilized in the prog-
nostic model.

Prognostic value of the 10 ferroptosis‑related genes 
signature in TCGA cohort
According to the scoring formula above, we calculated 
the risk value of each melanoma patient and divided 
them into high-risk group (n = 227) and low-risk group 
(n = 227) on the basis of the median cut-off value. The 
Kaplan–Meier curve illustrated that the overall sur-
vival time of the two groups had a significant difference 
(Fig.  2A, P < 0.001). PCA analysis could clearly reveal 
that patients were scattered in two different directions 
(Fig.  2C). The time-dependent ROC curve can evaluate 
the predictive ability of the prognostic model for survival. 
It demonstrated the value of the area under curve (AUC) 
at 3-, 5- and 10-year OS in this prognostic model were 
0.612, 0.638, 0.675, respectively (Fig. 2E). Meanwhile, in 
order to access the value of our signature in predicting 
the prognosis of melanoma in different stages, we divided 
the TCGA data into two groups (185 for stage I/II and 
154 for stage III/IV) to further validation. The K-M curve 
showed that patients with high risk scores had worse 
prognosis (Additional file 1: Fig. S1A and Fig. S1C). The 
AUC values of 3, 5, and 10 years in the ROC curves were 
0.608, 0.594, 0.668 in the stage I/II and 0.629, 0.654, 0.793 
in the stage III/IV, respectively (Additional file 1: Fig. S1B 
and Fig. S1D). PCA analysis outcomes were in accord-
ing with previous study (Additional file  1: Fig. S1E and 

14  https://​cistr​ome.​shiny​apps.​io/​timer/.
15  https://​www.​prote​inatl​as.​org.

https://cistrome.shinyapps.io/timer/
https://www.proteinatlas.org
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Fig. S1F). We performed the same analysis in primary 
tumors and metastatic melanoma. The results showed 
that in metastatic melanoma, high-risk patients had a 
worse prognosis (P < 0.001), which was not statistically 
significant in primary tumors (Additional file 1: Fig. S2A 
and S2C). The ROC curves indicated that in metastatic 
melanoma, our AUC values were in the range of 60–68% 
(Additional file 1: Fig. S2B), whereas in primary tumors 
there was no statistical analysis. PCA analysis illustrated 

that high-risk and low-risk patients were in two direc-
tions (Additional file 1: Fig. S2E and Fig. S2F).

Evaluation of the 10 ferroptosis‑related genes model 
in the GEO
To confirm the reliability of 10 ferroptosis-related genes 
model, we applied the same formula to calculate the risk 
score of each patient in the GEO database, and divided 
the patients into a high-risk group and a low-risk group 

Fig. 1  Identification of prognostic ferroptosis-related DEGs in the GTEx and TCGA cohort. A Venn-diagram to obtain survival-related genes that 
were differentially expressed in tumor and adjacent non-tumor tissues. B Forest-plots displaying the 22 genes of the uniCox regression analysis in 
relationship with OS and gene expression. C Heatmap showing the expression of 22 overlapping genes in a single tissue. D Boxplot showing the 
difference in expression of intersection genes in tumor and normal tissues. E Interactive network displaying the relevance of 22 genes in TCGA 
cohort. F, G Correlation heatmap in STRING database and GeneMANIA database, respectively. H GO enrichment analysis of 22 genes in Metascape 
database
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by risk value. Meanwhile, the K-M curve also showed 
that the patients at high-risk had a longer survival period 
than the ones at low-risk (Fig. 2B). Similarly, PCA analy-
sis displayed that melanoma patients in the two groups 
were scattered in distinct directions (Fig.  2D). In addi-
tion, the AUC values of the time-dependent ROC curves 
were 0.592, 0.619, 0.634 in the prognosis model of these 
10 biomarkers (Fig. 2F).

Independent prognostic value of the 10‑gene signature
Univariate and multivariate Cox regression were con-
ducted to analyze TCGA cohort data to evaluate whether 
clinical parameters and risk scores were independent 
prognostic factors for OS. It demonstrated that the risk 
score was highly related to OS in both univariate and 
multivariate Cox analyses and can be applied as an inde-
pendent prognostic indicator (Univariate: HR = 2.822, 
95% CI = 1.853–4.299, P < 0.001; Multivariate: 
HR = 2.755, 95% CI = 1.807–4.199, P < 0.001; Fig. 3A, B). 

The ROC curves illustrated that our signature for prog-
nostic prediction was better than other covariates with 
AUC value of 0.685 (Additional file  1: Fig. S3). Moreo-
ver, we drew a nomogram that could be utilized to pre-
dict the survival rate at 3-, 5-, and 10-year. The strategy to 
predict a patient’s prognostic status was to calculate the 
corresponding score and total score which corresponded 
to the different prognostic survival rates based on the 
patient’s clinical information and risk score (Fig.  3C). 
The calibration curves of 3-, 5-, 10-year proved that the 
nomogram-predicted results were consistent with the 
patient’s actual survival data, demonstrating a valid and 
valuable prognostic model (Fig. 3D–F).

Functional enrichment analyses
To figure out the biological pathways and functions con-
cerning genes in the prognostic model, we identified 52 
DEGs in two groups, and performed GO enrichment and 
KEGG pathway analyses (Additional file  6: Table  S5). It 

Fig. 2  Prognostic analysis of a 10-biomarker signature in TCGA cohort and GEO matrix. A, B Kaplan–Meier curves for two different-risk melanoma 
patient groups in TCGA cohort and GEO matrix, respectively. C, D PCA plots of the melanoma patients in TCGA cohort and GEO matrix, respectively. 
E, F the ROC curves of 3, 5, and 10 years of survival rates using 10 genes prognostic model in TCGA cohort and GEO matrix, respectively
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Fig. 3  Independent prognostic analysis of 10-gene risk scores and a nomogram. A The univariate Cox regression analysis of risk scores with 
other parameters. B Multivariate Cox regression analysis. C Nomogram used to predict 3, 5, and 10-year survival rates of melanoma patients. D–F 
Calibration curves of the nomogram at 3, 5, and 10 years
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Fig. 4  The enrichment analyses of GO, KEGG and ssGSEA in TCGA cohort. A, B GO enrichment analysis of DEGs in high- and low-risk group. C, D 
Results of KEGG enrichment analysis. E, F Results of ssGSEA enrichment analysis in the infiltration score of 16 immune cells and the activity of 13 
immune-related pathways
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elucidated that DEGs were largely enriched in epidermis 
development, collagen-containing extracellular matrix, 
and growth factor activity (Fig. 4A, B). The complete GO 
enrichment results were presented in Additional file  7: 
Table  S6. KEGG functional enrichment analysis dis-
played Calcium signaling pathway, Rap1 signaling path-
way, Ras signaling pathway, MAPK signaling pathway, 
PI3K − Akt signaling pathway (Fig. 4C, D). The complete 
KEGG enrichment results were presented in Additional 
file 8: Table S7. We then conducted ssGSEA in different 
immune cell subgroups and related functions to further 
explore the interrelation between genes and immune 
status in the risk model. In the two groups, Neutrophils 
and Treg cells were significantly different (P < 0.001), and 
most immune-related functions were lower enriched 
in melanoma patients at high risk. These indicated that 
the inflammatory infiltration in tumor sites was nega-
tively correlated with the melanoma patient’s prognosis 
(Fig. 4E, F).

Independent prognostic analysis of all ferroptosis‑related 
genes
In the group of highly expressed genes, although all 
genes had the independent prognostic ability in univari-
ate Cox regression analysis, none of them can be real-
ized with independent prognostic ability in multivariate 

Cox regression (Fig.  5A, B). In addition, there were 4 
low-expressed ferroptosis-related genes (CP, CS, SQLE, 
ZEB1) in univariate and multivariate Cox regression 
analysis that can be regarded as independent prognos-
tic genes (Fig. 5C, D). Because these genes were lowed-
expressed in melanoma tissues, but Hazard ratio of CS 
and SQLE were on the right side of 1 in the forest map, 
we selected CP and ZEB1 for the next analysis.

Evaluating prognostic value of CP and ZEB1 expression 
in melanoma patients
In GEPIA database, we again proved that CP was low 
expressed in 461 tumor samples and 558 normal sam-
ples (P < 0.05, Fig. 6A). Then we drew the K–M curves of 
CP in relation with OS and DFS in melanoma patients. 
Low expression of ZEB1 in melanoma patients was 
closely related to short OS and DFS (OS: P = 6e−06; DFS: 
P = 0.0053; Fig. 6B, C). In PrognoScan database, we uti-
lized GEO matrix (GSE19234) to verify that we obtained 
the same results (Fig. 6D). In TISIDB database, surpris-
ingly, we found that among all known tumors, the high 
expression of CP only showed a longer survival time in 
melanoma patients (Fig. 6E). Immunohistochemistry elu-
cidated that CP was under-expressed in tumor tissues 
(Fig. 6F). Next, we performed the same analyses on ZEB1. 
The expression of ZEB1 in tumor tissues was lower than 

Fig. 5  Independent prognostic analysis of each ferroptosis-related gene. A, B Univariate and multivariate Cox regression analysis of over-expressed 
ferroptosis-related genes. C, D Univariate and multivariate Cox regression analysis of low-expressed ferroptosis-related genes. CP and ZEB1 
displayed independent prognostic ability in both analyses
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Fig. 6  Verification of the low expression and effect of CP in melanoma in GEPIA, PrognoScan, TISIDB and HPA databases. A The expression of CP 
in tumor tissues and normal tissues in GEPIA database. B, C K-M curve of CP with OS and DFS in GEPIA database. D K-M curve of CP with OS in 
PrognoScan database. E Correlation between CP expression and survival time in all tumors in TISIDB database. F Immunohistochemical section of 
CP in HPA database
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Fig. 7  Verification of the low expression and effect of ZEB1 in melanoma in GEPIA, PrognoScan, TISIDB and HPA databases. A The expression of 
ZEB1 in tumor tissues and normal tissues in GEPIA database. B, C K-M curve of ZEB1 with OS and DFS in GEPIA database. D K–M curve of ZEB1 with 
OS in PrognoScan database. E Correlation between ZEB1 expression and survival time in all tumors in TISIDB database. F Immunohistochemical 
section of ZEB1 in HPA database
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that in adjacent normal tissues (Fig.  7A), and the high 
expression of ZEB1 will promote longer OS and DFS (OS: 
P = 0.001; DFS: P = 0.038; Fig.  7B, C). Patients with low 
ZEB1 expression had a shorter survival time in the Pro-
gnoScan database (Fig. 7D). Similarly, ZEB1 patients had 
a longer survival time in the TISIDB database (Fig. 7E). 
Immunohistochemistry showed that ZEB1 was expressed 
slightly higher in normal tissues than in tumors (Fig. 7F).

Genomic alternations and mutation survival analysis 
in melanoma patients
Using the cBioPortal database, we analyzed the genetic 
alternations of ZEB1 and CP in 1516 samples from 1477 
melanoma and skin melanoma patients. Two or more 
alternations were detected in the samples. The common 
manifestation of ZEB1 was depletion alterations, while 
amplification and depletion alterations were more com-
mon in CP (Fig. 8A). ZEB1 and CP were altered in 10% 
and 7% of the queried melanoma samples, respectively 
(Fig.  8B). Furthermore, we analyzed the relationship 
between gene mutation and survival status. It showed 
that the mutation of ZEB1 would lead to shorter OS in 
patients with melanoma (P < 0.001, Fig.  8C), while the 

progression survival time (PFS) of patients with the 
mutation of CP was significantly decreased (P < 0.05, 
Fig.  8D). This indicated that the mutation of ZEB1 may 
influence OS of melanoma patients and mutation of CP 
may be related to tumor progression.

Tumor immune estimation resource (TIMER)
Many studies had shown that immune infiltration in vari-
ous tumor types is related to the patient’s prognosis and 
treatment response [32]. We used the TIMER database to 
assess whether the expression of ZEB1 and CP were cor-
related with the level of immune infiltration. In the mela-
noma samples, ZEB1 level was positively related to CD4+ T 
cells (R = 0.338, p = 1.20e−13), CD8+ T cells (R = 0.203, 
p = 1.17e−5), macrophages (R = 0.152, p = 1.12e−03), 
dendritic cells (R = 0.008, p = 8.67e−1) and neutrophils 
(R = 0.528, p = 3.15e−34). Similarly, the level of CP had a 
positive correlation with B cells (R = 0.437, p = 8.77e−23), 
CD4+ T cells (R = 0.3, p = 6.15e−11), CD8+ T cells 
(R = 0.324, p = 1.32e−12), macrophages (R = 0.239, 
p = 2.32e−07), dendritic cells (R = 0.219, p = 2.29e−06) 
and neutrophils (R = 0.408, p = 1.02e−19) (Fig. 9A). Then, 
in order to investigate whether ZEB1 and CP were related, 

Fig. 8  Genomic alternation of ZEB1 and CP and the effects of mutations on OS and progression-free survival (PFS) in the cBioPortal database. A 
Genomics alternation forms of ZEB1 and CP in melanoma, respectively. B Mutation frequency of ZEB1 and CP from 1516 melanoma samples in 6 
studies. C, D K-M curves of OS and PFS in CP and ZEB1 mutation group and non-mutation group, respectively
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we analyzed the correlation between the two genes in the 
GEPIA database. It showed that they were positively cor-
related (R = 0.12, p = 0.012) (Fig.  9B). Next, we explored 
the therapeutic-related role of CP and ZEB1 in the TISIDB 
database. CP was currently known as the target of several 
drugs, while ZEB1 as tumors therapeutic drug target had 
not yet been recorded, which may require further research 
(Fig. 9C).

Gene set enrichment analysis (GSEA)
To clarify the molecular mechanism of ZEB1 and CP, we 
divided the 471 tumor patients in TCGA into high- and 
low-risk groups. We employed GSEA to compare the high-
risk and low-risk groups. The KEGG pathways enriched 
in the high-risk group of ZEB1 including TGF-b, ECM 
receptor, MAPK, melanoma, and other signal pathways. 
This indicated that ZEB1 may be involved in cellular func-
tions such as proliferation, apoptosis, differentiation, adhe-
sion, and migration (Fig.  9D). KEGG pathways including 
chemokine, leukocyte transendothelial migration, Fc 
gamma R-mediated phagocytosis, MAPK, and other signal 
pathways enriched in the high-risk group of CP. This sug-
gested that CP was closely related to tumor immunity, cel-
lular proliferation, and migration (Fig. 9E).

Discussion
In this work, our goal is to analyze the role of iron 
metabolism and ferroptosis-related genes in the prog-
nosis of melanoma patients comprehensively through 
high-throughput array technology. Although there are 
some reported ferroptosis-related signature and some 
biomarkers in melanoma and other tumors, including 
uveal melanoma [20, 21]. However, given the heteroge-
neity among different tumors, for example, although CM 
and uveal melanoma originate from the same melano-
cyte lineage, they differ in their cellular alterations, such 
as, somatic mutation profiles, tumor mutational burden, 
etc., and differ in pathogenesis and biological behavior, 
with different transfer pathways and tropisms [33, 34]. 
Therefore, it may be more specific to construct a prog-
nostic model for cutaneous melanoma. When processing 
data, in view of the small size of non-tumor samples in 
the TCGA cohort, we combined with normal samples in 
the GTEx database to systematically analyze the differen-
tial expression of iron death-related genes in melanoma. 
Differential genes with prognostic ability are divided 
into high expression and low expression groups. After 
LASSO regression analysis, the high expressed-genes 

were used to construct a 10-gene (ATG5, CHAC1, 
FANCD2, FBXL5, HMOX2, HSPB1, NQO1, PEBP1, 
PRNP, SLC3A2) prognostic signature in the TCGA 
cohort, which was validated by the GEO database, prov-
ing an excellent ability to predict prognosis. The AUC 
values of the ROC curves in our model ranged from 59 
to 79% (Total AUC: 59–63%; I/II stage AUC: 59–67%; III/
IV stage AUC: 63–79%), and the ROC curves of the prog-
nostic models constructed by Gao et  al. and Gao et  al. 
showed similar results in AUC values (AUC: 63–72% and 
52–70%, respectively) [35, 36]. Although its value was 
not as good as that of Jonsson G et al. and Nsengimana 
et  al., the ferroptosis-related prognostic signature we 
constructed was still novel and outperformed the other 
similar ferroptosis-related prognostic models reported 
[37–39]. The following univariable and multivariable Cox 
regressions displayed that prognostic signature can be 
regarded as an independent prognostic factor. In addi-
tion, the nomogram we constructed also revealed a good 
prognostic ability. GO and KEGG enrichment analyses 
elucidated that these genes were related to epidermal 
growth, cell proliferation, differentiation, and apopto-
sis. In the ssGSEA analysis, there were many differences 
in immune cells and immune functions, indicating that 
these genes were related to immunity. Genes in ferrop-
tosis-related prognostic signature can be divided into 
three categories, including genes that promote ferrop-
tosis sensitivity (ATG5, CHAC1, PEBP1), suppress fer-
roptosis sensitization genes (FANCD2, HSPB1, NQO1, 
SLC3A2), and iron metabolism related genes (FBXL5, 
HMOX2, PENP). However, these genes were all upregu-
lated in cutaneous melanoma tissues and were associ-
ated with poor prognosis in the current study, and their 
mechanical in the prognosis of cutaneous melanoma 
patients remains to be elucidated. ATG5 (autophagy-
related 5) can facilitate ferroptosis by regulating ferri-
tin degradation, and knockdown of ATG5 can attenuate 
the effect of ferroptosis inducers, decrease intracellular 
ferrous iron levels and lipid peroxidation [40]. CHAC1 
(Glutathione-Specific Gamma-Glutamylcyclotransferase 
1) is involved in the RIP1/RIP3-MLKL pathway and con-
tributes to cystine starvation-induced cell death. Knock-
down of CHAC1 rescues cystine starvation-induced 
decrease in glutathione (GSH) levels and cell death [41]. 
And the study found that the level of CHAC1 protein 
was significantly up-regulated in cells treated with fer-
roptosis inducers [42]. FANCD2 (Fanconi anemia com-
plementation group D2) is a nuclear protein involved 

Fig. 9  The relationship between two genes and immune cell infiltration and GSEA function enrichment analysis. A Correlation between genes and 
the infiltration of 6 immune cells is in the TIMER database. B The positive correlation of CP and ZEB1. C Network diagram of CP as a treatment target 
for 4 kinds of cancer drugs. D, F GSEA analysis of CP and ZEB1 illustrated that ZEB1 was related to cell proliferation, differentiation, and migration, 
while CP was associated with cytokine pathway and immune cell infiltration

(See figure on next page.)
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Fig. 9  (See legend on previous page.)
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in DNA repair, and its expression level is up-regulated 
when ferroptosis inhibitor is added, suggesting that it has 
a negative role in ferroptosis and can be further utilized 
to reduce the side effects of ferroptosis treatment drugs 
[40]. FBXL5 (F-box and leucine-rich repeats protein 5) 
maintains intracellular iron homeostasis mainly by regu-
lating the degradation of IRP2 (iron regulatory protein 
2) [20]. HMOX2 is an isoenzyme of heme oxygenase, 
which catalyzes the degradation of heme into ferrous 
iron and other substances [43]. Activation of HMOX2 
by oncogenic BRAF promotes the increase of melano-
spheres in melanoma [44]. HSPB1 (heat shock protein 
beta-1) can be mediated by Protein kinase C, which in 
turn plays a negative regulatory role in ferroptosis [45]. 
NQO1 (NAD(P)H quinone dehydrogenase 1) is not ben-
eficial to ferroptosis and is closely related to the tumor 
immune microenvironment [9, 46]. PEBP1 (phosphati-
dylethanolamine-binding protein 1) is a scaffold protein 
inhibitor of the protein kinase cascades, and can promote 
ferroptosis by combining with 15-lipoxygenases (15-LO) 
to generate hydroperoxy-PE [47]. PRNP (The prion pro-
tein) is involved in many cell biological processes and is 
associated with the prognosis of many tumors [6, 40]. 
It is mainly involved in iron metabolism and affects cel-
lular oxidative stress by affecting the ERK pathway [48]. 
SLC3A2 has been shown to be associated with radio-
therapy resistance in many tumors, and overexpression 
of SLC3A2 leads to worse prognosis by promoting tumor 
development and reducing apoptosis [49, 50].

On the other hand, we conducted analyses on low-
expressed genes with independent prognostic value. We 
used a variety of databases to verify their low expression 
in melanoma and draw a survival curve, which once again 
proved their independent prognostic ability and potential 
effect. In addition, we explored the genetic mutations of 
these two genes and drew survival curves of the mutant 
group and the non-mutant group. It showed that the 
mutation of ZEB1 could cause a significant decrease in 
the OS in melanoma patients, and mutation of CP was 
closely related to the progression of the tumor. Next, we 
discussed the immune infiltration level of ZEB1 and CP 
in melanoma. These two genes were positively corre-
lated in the 6 immune cells, and there was also a posi-
tive correlation between ZEB1 and CP. We further found 
that CP had been used as a target for four tumor drugs, 
while ZEB1 did not have targeted drugs yet. Therefore, 
our study also provided a new perspective for future drug 
research and development. Finally, GESA was used to 
analyze these two genes. The results showed that ZEB1 
was closely related to cell proliferation, differentiation, 
apoptosis, adhesion, and metastasis, and CP was closely 
related to cytokine release and immune-related path-
ways. CP (Ceruloplasmin) is involved in the peroxidation 

of Fe (II) transferrin to Fe (III) transferrin. Although CP 
has increased expression in lung cancer [51], cholan-
giocarcinoma [52] and other tumors in previous studies, 
Zhu et al. found that the decline in CP expression indi-
cated a poor prognosis for the patients in adrenocorti-
cal carcinoma [53]. In our study, the expression level of 
CP in melanoma is presumably decreased in tumor tis-
sues and the PFS of melanoma patients with CP muta-
tion is significantly reduced. However, the study of CP in 
melanoma tumors has not been fully conducted, which 
provides ideas for the next research. ZEB1 (Zinc Finger 
E-Box Binding Homeobox  1) is an important gene that 
can promote epithelial-mesenchymal transition (EMT). 
The low expression of ZEB1 can impede EMT, reducing 
the sensitivity of cells to ferroptosis, which will weaken 
the ability to resist cancer [54].

There are still some limitations in our study. First, we 
utilized retrospective data from public databases to 
construct and verify our prognostic model; Second, we 
applied only a single biomarker to construct a prognos-
tic model, which may exclude other important genes of 
melanoma. Third, compared with some previous studies 
on prognostic markers, our study lacks a more rigorous 
design, such as more specific stages, intervention factors, 
and so on [38, 39, 55]. Overall, our study focuses on fer-
roptosis and iron metabolism and defines a 10-prognos-
tic gene model related to iron death and this model has 
a good predictive ability. More importantly, we find that 
CP and ZEB1 have special effects in melanoma, which 
also provides a new insight for future research exploring 
molecular mechanism and drug treatment in melanoma. 
Research on the correlation of melanoma with ferropto-
sis and immunity is worthy of further study to explore 
potential molecular mechanisms and improve prognosis.

Conclusions
In conclusion, we identified 22 ferroptosis-related DEGs 
associated with the prognosis of melanoma patients, 
constructed a 10-gene prognostic signature, and drew 
a nomogram to predict the prognosis of melanoma 
patients. Then we discovered and analyzed the effects of 
CP and ZEB1 in melanoma patients. The clusters showed 
significant associations with cell proliferation, differen-
tiation, adhesion, migration, and immune function. These 
biomarkers can properly predict the survival time of 
melanoma patients. Further studies should be performed 
to explore the precise role of these genes in cutaneous 
melanoma.
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